Alternative Splicing of G9a Regulates Neuronal Differentiation.

نویسندگان

  • Ana Fiszbein
  • Luciana E Giono
  • Ana Quaglino
  • Bruno G Berardino
  • Lorena Sigaut
  • Catalina von Bilderling
  • Ignacio E Schor
  • Juliana H Enriqué Steinberg
  • Mario Rossi
  • Lía I Pietrasanta
  • Julio J Caramelo
  • Anabella Srebrow
  • Alberto R Kornblihtt
چکیده

Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions

Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely...

متن کامل

RBM4 down-regulates PTB and antagonizes its activity in muscle cell–specific alternative splicing

Alternative splicing contributes largely to cell differentiation and functional specification. We previously reported that the RNA-binding protein RBM4 antagonizes the activity of splicing factor PTB to modulate muscle cell-specific exon selection of α-tropomyosin. Here we show that down-regulation of PTB and its neuronal analogue nPTB during muscle cell differentiation may involve alternative ...

متن کامل

Repressing the neuron within.

A myriad of coordinated signals control cellular differentiation. Reprogramming the cell's proteome drives global changes in cell morphology and function that define cell phenotype. A switch in alternative splicing of many pre-mRNAs encoding neuronal-specific proteins accompanies neuronal differentiation. Three groups recently showed that the global splicing repressor, polypyrimidine track-bind...

متن کامل

A Repressing the neuron within

A myriad of coordinated signals control cellular differentiation. Reprogramming the cell’s proteome drives global changes in cell morphology and function that define cell phenotype. A switch in alternative splicing of many pre-mRNAs encoding neuronal-specific proteins accompanies neuronal differentiation. Three groups recently show that the global splicing repressor, polypyridmine track binding...

متن کامل

Alternative Splicing in Neurogenesis and Brain Development

Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 2016